Leader selection and weight redesign problems for multi-agent systems
نویسندگان
چکیده
For an uncontrollable system, adding leaders and adjusting edge weights are two methods to improve controllability. In this paper, controllability of multi-agent systems under directed topologies is studied, especially on leader selection problem and weight adjustment problem. For a given system, necessary and sufficient algebraic conditions for controllability with fewest leaders are proposed. From another perspective, when leaders are fixed, controllability could be improved by adjusting edge weights, and therefore the system is supposed to be structurally controllable, which holds if and only if the communication topology contains a spanning tree. It is also proved that the number of fewest edges needed to be assigned on new weights equals the rank deficiency of controllability matrix. An algorithm on how to perform weight adjustment is presented. Simulation examples are provided to illustrate the theoretical results. keywords: Multi-agent systems; Controllability; Leader selection; Weight adjustment
منابع مشابه
Adaptive Leader-Following and Leaderless Consensus of a Class of Nonlinear Systems Using Neural Networks
This paper deals with leader-following and leaderless consensus problems of high-order multi-input/multi-output (MIMO) multi-agent systems with unknown nonlinear dynamics in the presence of uncertain external disturbances. The agents may have different dynamics and communicate together under a directed graph. A distributed adaptive method is designed for both cases. The structures of the contro...
متن کاملOptimal adaptive leader-follower consensus of linear multi-agent systems: Known and unknown dynamics
In this paper, the optimal adaptive leader-follower consensus of linear continuous time multi-agent systems is considered. The error dynamics of each player depends on its neighbors’ information. Detailed analysis of online optimal leader-follower consensus under known and unknown dynamics is presented. The introduced reinforcement learning-based algorithms learn online the approximate solution...
متن کاملPSO for multi-objective problems: Criteria for leader selection and uniformity distribution
This paper proposes a method to solve multi-objective problems using improved Particle Swarm Optimization. We propose leader particles which guide other particles inside the problem domain. Two techniques are suggested for selection and deletion of such particles to improve the optimal solutions. The first one is based on the mean of the m optimal particles and the second one is based on appoin...
متن کاملAdaptive Neural Network Method for Consensus Tracking of High-Order Mimo Nonlinear Multi-Agent Systems
This paper is concerned with the consensus tracking problem of high order MIMO nonlinear multi-agent systems. The agents must follow a leader node in presence of unknown dynamics and uncertain external disturbances. The communication network topology of agents is assumed to be a fixed undirected graph. A distributed adaptive control method is proposed to solve the consensus problem utilizing re...
متن کاملVariable Structure Behavioural Controller for Multi-agent Systems
In previous papers authors have considered agents as inertia-less self driven particles and designed a flocking algorithm. Application of this algorithm to agents with considerable inertial characteristics needs a behavioural controller. The controller uses the local information and helps every agent to imitate the desired behaviour as a member of the flocking frame which covers the main is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1503.05913 شماره
صفحات -
تاریخ انتشار 2015